
PDG Computing Review, September 17, 2010 David W. Robertson (LBNL), Page 1

PDG Database

David W. Robertson
Computational Research Division

Lawrence Berkeley National Laboratory



PDG Computing Review, September 17, 2010 David W. Robertson (LBNL), Page 2

PDG Architecture



PDG Computing Review, September 17, 2010 David W. Robertson (LBNL), Page 3

Topics Covered

• Background

• Complex database

• Why we chose the following goals after careful review of the original 
system

• Goals for upgrade

• Upgrade database incrementally

• Modernize the database, allowing full usage of tools available in Java 
and Python, and allowing Web-level applications

• The Web-level applications ensure that it is no longer the editor doing 
everything, and the process is scalable

• Have a maintainable database for years into the future

• Continue production of the book while under development, and have 
a seamless transition to the upgraded database



PDG Computing Review, September 17, 2010 David W. Robertson (LBNL), Page 4

History

• The Review has been 
produced for 40 years

• Originally typewritten text

• Punch cards in the 1980’s

• Oracle database: 1988-2005

• PostgreSQL: 2005-present

• The process has worked for 
all this time

• Adhered to best practices to 
get the book out

• The result has been accurate 
and dependable



PDG Computing Review, September 17, 2010 David W. Robertson (LBNL), Page 5

Status before Upgrade

• Original design worked for many years, but was brittle and 
required expert knowledge of the database

• Complex database with many implicit relationships

• Legacy Fortran (110,000 lines) directly accessing the database

• Partly carried over into new system; no need to replace

• Difficult to use with modern database tools

• No integrity constraints

• No primary keys

• No foreign keys

• Scalability and maintainability needed to be improved

• Assumption of single editor accessing the database: not scalable

• Documentation was incomplete

• No task-level change logging



PDG Computing Review, September 17, 2010 David W. Robertson (LBNL), Page 6

• 38 megabytes, 104 tables, 
679 columns

• ~600,000 rows with many 
tables having thousands of 
rows

• Multiple relationships 
between tables, but no 
constraints

• Divided into scientific and 
book production tables; book 
production tables refer to 
scientific tables

Complex Database



PDG Computing Review, September 17, 2010 David W. Robertson (LBNL), Page 7

Design Goals

• Goals were chosen after careful review of the initial status

• Changes have to be made incrementally; redoing completely 
not feasible

• Decades of effort have gone into a complex database and have to be 
preserved; complete redesign would have been much larger effort

• Complete change incompatible with ongoing production of the review

• Must still maintain compatibility with existing data and existing legacy 
Fortran programs

• Move to a more modern database

• Add integrity constraints, which

• Enables more modern tooling, supporting PostgreSQL multi-user 
mode in higher level applications using Java and Python

• Ensure maintainability into the future

• Have a process to continue production of the review while 
under development, and ensure a seamless transition



PDG Computing Review, September 17, 2010 David W. Robertson (LBNL), Page 8

Data Integrity

• Provides formal constraints to make database consistent and 
more navigable

• Primary keys declared in all tables: entity integrity

• Foreign keys declared in many tables: referential integrity



PDG Computing Review, September 17, 2010 David W. Robertson (LBNL), Page 9

Benefits of Referential Integrity

All references by an author can now easily be found.

All authors for a reference are also easily found.

Consistency is automatically enforced by the database.



PDG Computing Review, September 17, 2010 David W. Robertson (LBNL), Page 10

Tree Organization of Review



PDG Computing Review, September 17, 2010 David W. Robertson (LBNL), Page 11

Workflow Related Tables



PDG Computing Review, September 17, 2010 David W. Robertson (LBNL), Page 12

Maintainability



PDG Computing Review, September 17, 2010 David W. Robertson (LBNL), Page 13

Red Book Documentation



PDG Computing Review, September 17, 2010 David W. Robertson (LBNL), Page 14

• Transactional logging is opaque, and shows all database 
operations without context except for time

• Task level logging

• Ability to see all insertions, updates, and deletions on a per task level.

• Ability to debug mistakes at the task level

• Chuck’s talk has the details

Change Logging



PDG Computing Review, September 17, 2010 David W. Robertson (LBNL), Page 15

PDG Architecture



PDG Computing Review, September 17, 2010 David W. Robertson (LBNL), Page 16

Python API

• SQL is a very low level way to access the database, and is not 
programmatic except in a vendor-specific way

• A data block in the Review involves a number of tables and 
relationships

• Python API provides interactive API to deal with data block

• Uses the object relational mapping (ORM) tools SqlAlchemy and 
SqlSoup for accessing the database

• ORM tools are important, and Chuck’s talk will cover the details

• Demo showing the simplicity of this API in the afternoon



PDG Computing Review, September 17, 2010 David W. Robertson (LBNL), Page 17

Data Block



PDG Computing Review, September 17, 2010 David W. Robertson (LBNL), Page 18

Upgrade process



PDG Computing Review, September 17, 2010 David W. Robertson (LBNL), Page 19

Documenting Upgrade Process



PDG Computing Review, September 17, 2010 David W. Robertson (LBNL), Page 20

• A process was put in place to ensure that when the 
production system was upgraded, everything would work

• A number of changes in development database until database 
frozen; all changes had to be tested

• Nightly test procedure

• Changes in production database committed as SQL dumps under 
CVS control

• Copy of the production database created from SQL dumps, and 
upgraded database produced by applying SQL scripts

• Tested the resulting database against the Java and Python API’s

Upgrade Verification Process



PDG Computing Review, September 17, 2010 David W. Robertson (LBNL), Page 21

Upgrading to V0

• July 2009-May 2010:  Ongoing development of upgraded 
database and Java applications on old machine

• March 2010-May 2010:  Database development on machine 
with room for growth, using PostgreSQL 8.4

• May 2010:  Development database schema frozen, Java 
applications moved to new machine and to PostgreSQL 8.4

• July 2010:  All legacy Fortran programs worked with the 
development PostgreSQL 8.4 database

• August 2010: Production database moved to new machine, 
and upgraded to incorporate modifications introduced in 
tested development database

• V0 release



PDG Computing Review, September 17, 2010 David W. Robertson (LBNL), Page 22

Current Status

• Successfully moved from a legacy database to a modern 
database

• Satisfied constraint of producing the 2010 edition of the 
review while the modified database was under development

• The review produced by the legacy Fortran programs is 
identical using the old and new production database

• Database-related work for the remaining interfaces will 
incorporate the same proven design and verification 
processes that worked for V0



PDG Computing Review, September 17, 2010 David W. Robertson (LBNL), Page 23

• Majority of changes have been accomplished

• Additional changes will occur at planned intervals

• Minor changes still remain

• New columns in some tables

• More foreign keys

• Implementing remaining interfaces will necessitate new 
schema but minor changes to existing schema

Changes Past V0



PDG Computing Review, September 17, 2010 David W. Robertson (LBNL), Page 24

Conclusions

• Database now meets our needs

• Shifted constraints from the application to the database level

• Each new application no longer has to re-implement constraints

• Database itself now logs every task

• Deployment was seamless

• Well-documented, and maintainable into future

It is now our production database!!!


